Engineering 1D04

Assignment I

The following is due at the **BEGINNING** of the tutorial (JHE 317-319) the week of Jan 20 to 24, 2003:

- 1) The pseudo-code for the given problem. This must be typed, not hand-written. Make sure that you keep a copy of the pseudo-code so that you can use it to develop your C code. You will also need a copy to hand-in as an appendix for the next assignment.
- 2) Answers to the question(s) provided at the end of this assignment.

NOTE: Please include your tutorial number on every assignment. Also, remember that at the top of the first page of every assignment the following must be included:

"This assignment represents my own work",

followed by your signature, and your e-mail address. You need to include this information, or your assignment mark will be ZERO. Late assignments should be taken to the Drop-In-Centre (ITB/101). Late assignments will not be accepted after 4:30 on the day of your tutorial.

Problem

Write the data declarations, pseudo-code for a program that will compute the following:

- (i) the length l, of the pier (Figure 1), from the shore to a point where the depth of the water body is h (the value of h is known);
- (ii) the angle of the bottom inclination β (degrees), and
- (iii) the total volume V_T of two cylindrical pillars supporting the far edge of the pier.

The depth H of the water body at the given distance L is known.

We assume that the angle of the bottom declination does not change as we move away from

the shore. The value of H can be measured from a ship, which cannot come closer to the shore than L. The pillars of diameter d = 0.3 meters stand on the bottom surface. The top of each pillar that is vertical to the undisturbed water surface extends above the water surface by the height $\Delta z = 0.5$ meters. The total height of each pillar is $h + \Delta z$.

The assignment is to compute:

- (i) the angle β (degrees) if the values of L and H are known
- (ii) the length of the pier l (m) if the value of h is known
- (iii) the total volume V_T (m³) of two pillars supporting the pier

Steps

- 1) Read values L, H, d, Δz and h. Normally, after the values are read, they are checked for validity. However, to simplify this assignment, we will assume that the data are always input correctly.
- 2) Compute β
- 3) Compute *l*
- 4) Compute the height of the pillars
- 5) Compute the total volume of two pillars
- 6) Output the results of the computations

Questions

- 1) You developed a pseudo-code that can be used to solve the problem that we discussed. For which programming language(s) does your pseudo-code form a proper basis that makes the process of coding easier?
- 2) This is a two part Question:
 - i) Do you think that a PC "understands" pseudo-code? Give an answer of "Yes" or "No" and briefly explain why.
 - ii) What program does a computer have to have in order for it to "understand" C code?